Herbaceous Angiosperms Are Not More Vulnerable to Drought-Induced Embolism Than Angiosperm Trees.
نویسندگان
چکیده
The water transport pipeline in herbs is assumed to be more vulnerable to drought than in trees due to the formation of frequent embolisms (gas bubbles), which could be removed by the occurrence of root pressure, especially in grasses. Here, we studied hydraulic failure in herbaceous angiosperms by measuring the pressure inducing 50% loss of hydraulic conductance (P50) in stems of 26 species, mainly European grasses (Poaceae). Our measurements show a large range in P50 from -0.5 to -7.5 MPa, which overlaps with 94% of the woody angiosperm species in a worldwide, published data set and which strongly correlates with an aridity index. Moreover, the P50 values obtained were substantially more negative than the midday water potentials for five grass species monitored throughout the entire growing season, suggesting that embolism formation and repair are not routine and mainly occur under water deficits. These results show that both herbs and trees share the ability to withstand very negative water potentials without considerable embolism formation in their xylem conduits during drought stress. In addition, structure-function trade-offs in grass stems reveal that more resistant species are more lignified, which was confirmed for herbaceous and closely related woody species of the daisy group (Asteraceae). Our findings could imply that herbs with more lignified stems will become more abundant in future grasslands under more frequent and severe droughts, potentially resulting in lower forage digestibility.
منابع مشابه
Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin.
Drought-induced cavitation resistance varies considerably between tree species and forest ecosystems (Maherali et al., 2004; Delzon et al., 2010) and is closely linked to survival under severe drought in both conifers (Brodribb & Cochard, 2009; Brodribb et al., 2010) and angiosperms (Kursar et al., 2009; Anderegg et al., 2012; Barigah et al., 2013; Urli et al., 2013). Choat et al. (2012) recent...
متن کاملXylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.
Hydraulic failure is one of the main causes of tree mortality in conditions of severe drought. Resistance to cavitation is known to be strongly related to drought tolerance and species survival in conifers, but the threshold of water-stress-induced embolism leading to catastrophic xylem dysfunction in angiosperms has been little studied. We investigated the link between drought tolerance, survi...
متن کاملConifer–Angiosperm Interactions: Physiological Ecology and Life History
Worldwide, conifers are most successful on sites subject to chronic stresses that limit productivity (low temperatures, nutrient poverty, poor drainage). They are poorly represented in the lowland tropics but are often important in montane tropical forests. Here I explore some functional differences between leaf and xylem traits of conifer and angiosperm trees and their implications for the dis...
متن کاملContrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale
Recent large-scale studies of tree growth in the Iberian Peninsula reported contrasting positive and negative effects of temperature in Mediterranean angiosperms and conifers. Here we review the different hypotheses that may explain these trends and propose that the observed contrasting responses of tree growth to temperature in this region could be associated with a continuum of trait differen...
متن کاملAugmentation of abscisic acid (ABA) levels by drought does not induce short-term stomatal sensitivity to CO2 in two divergent conifer species
The stomata of conifers display very little short-term response to changes in atmospheric CO(2) concentration (C(a)), whereas the stomatal responses of angiosperms to C(a) increase in response to water stress. This behaviour of angiosperm stomata appears to be dependent on foliar levels of abscisic acid (ABA(f)). Here two alternative explanations for the stomatal insensitivity of conifers to C(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 172 2 شماره
صفحات -
تاریخ انتشار 2016